114 research outputs found

    Retrospective Inference as a Form of Bounded Rationality, and Its Beneficial Influence on Learning

    Get PDF
    Probabilistic models of cognition typically assume that agents make inferences about current states by combining new sensory information with fixed beliefs about the past, an approach known as Bayesian filtering. This is computationally parsimonious, but, in general, leads to suboptimal beliefs about past states, since it ignores the fact that new observations typically contain information about the past as well as the present. This is disadvantageous both because knowledge of past states may be intrinsically valuable, and because it impairs learning about fixed or slowly changing parameters of the environment. For these reasons, in offline data analysis it is usual to infer on every set of states using the entire time series of observations, an approach known as (fixed-interval) Bayesian smoothing. Unfortunately, however, this is impractical for real agents, since it requires the maintenance and updating of beliefs about an ever-growing set of states. We propose an intermediate approach, finite retrospective inference (FRI), in which agents perform update beliefs about a limited number of past states (Formally, this represents online fixed-lag smoothing with a sliding window). This can be seen as a form of bounded rationality in which agents seek to optimize the accuracy of their beliefs subject to computational and other resource costs. We show through simulation that this approach has the capacity to significantly increase the accuracy of both inference and learning, using a simple variational scheme applied to both randomly generated Hidden Markov models (HMMs), and a specific application of the HMM, in the form of the widely used probabilistic reversal task. Our proposal thus constitutes a theoretical contribution to normative accounts of bounded rationality, which makes testable empirical predictions that can be explored in future work

    Working memory replay prioritizes weakly attended events

    Get PDF
    One view of working memory posits that maintaining a series of events requires their sequential and equal mnemonic replay. Another view is that the content of working memory maintenance is prioritized by attention. We decoded the dynamics for retaining a sequence of items using magnetoencephalography, wherein participants encoded sequences of three stimuli depicting a face, a manufactured object, or a natural item and maintained them in working memory for 5000 ms. Memory for sequence position and stimulus details were probed at the end of the maintenance period. Decoding of brain activity revealed that one of the three stimuli dominated maintenance independent of its sequence position or category; and memory was enhanced for the selectively replayed stimulus. Analysis of event-related responses during the encoding of the sequence showed that the selectively replayed stimuli were determined by the degree of attention at encoding. The selectively replayed stimuli had the weakest initial encoding indexed by weaker visual attention signals at encoding. These findings do not rule out sequential mnemonic replay but reveal that attention influences the content of working memory maintenance by prioritizing replay of weakly encoded events. We propose that the prioritization of weakly encoded stimuli protects them from interference during the maintenance period, whereas the more strongly encoded stimuli can be retrieved from long-term memory at the end of the delay period

    How do neural processes give rise to cognition? Simultaneously predicting brain and behavior with a dynamic model of visual working memory

    Get PDF
    There is consensus that activation within distributed functional brain networks underlies human thought. The impact of this consensus is limited, however, by a gap that exists between data-driven correlational analyses that specify where functional brain activity is localized using functional magnetic resonance imaging (fMRI), and neural process accounts that specify how neural activity unfolds through time to give rise to behavior. Here, we show how an integrative cognitive neuroscience approach may bridge this gap. In an exemplary study of visual working memory, we use multilevel Bayesian statistics to demonstrate that a neural dynamic model simultaneously explains behavioral data and predicts localized patterns of brain activity, outperforming standard analytic approaches to fMRI. The model explains performance on both correct trials and incorrect trials where errors in change detection emerge from neural fluctuations amplified by neural interaction. Critically, predictions of the model run counter to cognitive theories of the origin of errors in change detection. Results reveal neural patterns predicted by the model within regions of the dorsal attention network that have been the focus of much debate. The model-based analysis suggests that key areas in the dorsal attention network such as the intraparietal sulcus play a central role in change detection rather than working memory maintenance, counter to previous interpretations of fMRI studies. More generally, the integrative cognitive neuroscience approach used here establishes a framework for directly testing theories of cognitive and brain function using the combined power of behavioral and fMRI data. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

    Learning words in space and time: Contrasting models of the suspicious coincidence effect

    Get PDF
    In their 2007b Psychological Review paper, Xu and Tenenbaum found that early word learning follows the classic logic of the “suspicious coincidence effect:” when presented with a novel name (‘fep’) and three identical exemplars (three Labradors), word learners generalized novel names more narrowly than when presented with a single exemplar (one Labrador). Xu and Tenenbaum predicted the suspicious coincidence effect based on a Bayesian model of word learning and demonstrated that no other theory captured this effect. Recent empirical studies have revealed, however, that the effect is influenced by factors seemingly outside the purview of the Bayesian account. A process-based perspective correctly predicted that when exemplars are shown sequentially, the effect is eliminated or reversed (Spencer, Perone, Smith, & Samuelson, 2011). Here, we present a new, formal account of the suspicious coincidence effect using a generalization of a Dynamic Neural Field (DNF) model of word learning. The DNF model captures both the original finding and its reversal with sequential presentation. We compare the DNF model's performance with that of a more flexible version of the Bayesian model that allows both strong and weak sampling assumptions. Model comparison results show that the dynamic field account provides a better fit to the empirical data. We discuss the implications of the DNF model with respect to broader contrasts between Bayesian and process-level models

    Comparing families of dynamic causal models

    Get PDF
    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data

    An introduction to thermodynamic integration and application to dynamic causal models

    Get PDF
    In generative modeling of neuroimaging data, such as dynamic causal modeling (DCM), one typically considers several alternative models, either to determine the most plausible explanation for observed data (Bayesian model selection) or to account for model uncertainty (Bayesian model averaging). Both procedures rest on estimates of the model evidence, a principled trade-off between model accuracy and complexity. In the context of DCM, the log evidence is usually approximated using variational Bayes. Although this approach is highly efficient, it makes distributional assumptions and is vulnerable to local extrema. This paper introduces the use of thermodynamic integration (TI) for Bayesian model selection and averaging in the context of DCM. TI is based on Markov chain Monte Carlo sampling which is asymptotically exact but orders of magnitude slower than variational Bayes. In this paper, we explain the theoretical foundations of TI, covering key concepts such as the free energy and its origins in statistical physics. Our aim is to convey an in-depth understanding of the method starting from its historical origin in statistical physics. In addition, we demonstrate the practical application of TI via a series of examples which serve to guide the user in applying this method. Furthermore, these examples demonstrate that, given an efficient implementation and hardware capable of parallel processing, the challenge of high computational demand can be overcome successfully. The TI implementation presented in this paper is freely available as part of the open source software TAPAS

    Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation

    Get PDF
    There has been considerable interest from the fields of biology, economics, psychology, and ecology about how decision costs decrease the value of rewarding outcomes. For example, formal descriptions of how reward value changes with increasing temporal delays allow for quantifying individual decision preferences, as in animal species populating different habitats, or normal and clinical human populations. Strikingly, it remains largely unclear how humans evaluate rewards when these are tied to energetic costs, despite the surge of interest in the neural basis of effort-guided decision-making and the prevalence of disorders showing a diminished willingness to exert effort (e.g., depression). One common assumption is that effort discounts reward in a similar way to delay. Here we challenge this assumption by formally comparing competing hypotheses about effort and delay discounting. We used a design specifically optimized to compare discounting behavior for both effort and delay over a wide range of decision costs (Experiment 1). We then additionally characterized the profile of effort discounting free of model assumptions (Experiment 2). Contrary to previous reports, in both experiments effort costs devalued reward in a manner opposite to delay, with small devaluations for lower efforts, and progressively larger devaluations for higher effort-levels (concave shape). Bayesian model comparison confirmed that delay-choices were best predicted by a hyperbolic model, with the largest reward devaluations occurring at shorter delays. In contrast, an altogether different relationship was observed for effort-choices, which were best described by a model of inverse sigmoidal shape that is initially concave. Our results provide a novel characterization of human effort discounting behavior and its first dissociation from delay discounting. This enables accurate modelling of cost-benefit decisions, a prerequisite for the investigation of the neural underpinnings of effort-guided choice and for understanding the deficits in clinical disorders characterized by behavioral inactivity

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    • 

    corecore